首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   128篇
  国内免费   40篇
化学   107篇
晶体学   1篇
力学   38篇
综合类   5篇
数学   233篇
物理学   480篇
  2023年   3篇
  2022年   15篇
  2021年   34篇
  2020年   21篇
  2019年   47篇
  2018年   28篇
  2017年   44篇
  2016年   42篇
  2015年   35篇
  2014年   43篇
  2013年   40篇
  2012年   52篇
  2011年   68篇
  2010年   47篇
  2009年   50篇
  2008年   61篇
  2007年   46篇
  2006年   60篇
  2005年   34篇
  2004年   27篇
  2003年   28篇
  2002年   22篇
  2001年   7篇
  2000年   8篇
  1999年   1篇
  1957年   1篇
排序方式: 共有864条查询结果,搜索用时 15 毫秒
91.
92.
孙科举 《催化学报》2016,(10):1608-1618
近年来,纳米金催化剂独特的催化性质,特别是其优异的低温催化氧化活性,引起了人们极大的研究热情.除低温选择氧化外,在精细化学品合成、大气污染物消除、氢能的转换和利用等领域也开发出了一系列有广泛应用前景的金催化反应.此外,体相金的化学惰性和纳米金的超高活性之间差异的“鸿沟”也引起了理论工作者浓厚兴趣,试图从原理上理解体相金和纳米金活性差异的根源. CO催化氧化是最具有代表性的研究金催化活性的化学反应,本文主要综述了近十多年来金催化 CO氧化反应理论计算方面的研究工作.一般认为, CO在纳米金表面的吸附是 CO氧化反应的初始步骤.密度泛函理论研究表明, CO在金表面的吸附强度主要与被吸附金原子的配位数有关:金配位数越低, CO的吸附能越强,部分研究结果表明两者之间存在近似的线性关系.我们研究发现, CO吸附强度也与被吸附金周围配位金原子的相对位置有关,其中位于正下方的配位金原子加强 CO吸附,而位于侧位的配位金原子则弱化 CO吸附,这显然削弱了 CO吸附与金配位数线性关系的可靠性.理论研究表明,在纯金表
  面上 O2吸附强度一般很弱,只有在一些特殊结构的金团簇上才有较强的吸附,但在 Au/TiO2界面及 CeO2表面上 O2吸附较强.金表面原子氧的吸附和金的表面结构有关.我们发现,原子氧倾向于在金的表面形成一种线性的 O–Au–O结构以增加其稳定性.当金表面的氧覆盖度增大时,会形成一种金氧化物薄膜结构,其结构依赖于氧的化学势和金的表面结构.纳米金催化 CO氧化反应机理可能因体系、载体等的差异而不同.大部分理论计算结果表明,在纯金表面上 O2很难直接解离形成原子氧,因此反应机理可能是吸附的 CO先与 O2反应形成了一种 CO–O2中间体,然后解离形成 CO2.在 Au/TiO2和 Au/CeO2催化剂上 CO催化氧化机理争议很大,均有计算结果支持 LH机理和 M–vK机理.另外,根据实验上观察到了负载型纳米金能直接活化分子氧的结果,理论上也提出了分子氧先解离为原子氧再与 CO反应的氧解离机理.针对如何解离分子氧问题,人们分别提出了低配位金模型、正方形金结构模型、Ti5c模型及 Au/Ti5c模型等.我们也提出了一种独特的双直线 O–Au–O模型来理解 Au/TiO2或 Au/CeO2界面解离活化分子氧.理论计算结果表明,低配位的金,金和载体之间的电荷转移,以及金所表现出的强相对论效应对于纳米金的活性影响很大.需要特别指出的是,金的强相对论效应有助于理解金表面的 CO吸附与金配位的关系、金表面原子氧的吸附特性、金氧化物薄膜的结构和分子氧的活化等过程.我们认为,金的强相对论作用导致了体相金的化学惰性以及纳米金的活性,因此相对论效应的深入研究将有助于理解金催化 CO氧化反应机理,从而有助于深层次理解纳米金催化活性来源.  相似文献   
93.
Y_2SiO_5:Ce~(3+)(YSO:Ce)具有高密度、不吸潮以及良好的光输出和快速衰减的特性,是一种重要的闪烁材料。研究采用高温固相法制备Y_2SiO_5:Ce~(3+)+0.2%(YSO:Ce)。在低温及室温下,对闪烁体YSO:Ce的时间分辨发射光谱、激发光谱以及衰减曲线进行了测量和分析。YSO:Ce主要有两类发射,一是晶体的缺陷发射,发射中心在320 nm;二是掺杂的Ce~(3+)的5d→4f发射,发射中心在440 nm。只有当激发能量(E_x)大于材料带隙宽度(E_g)时才能够激发出晶体缺陷发射,对应慢速的激发发射过程,且低温时发射强度较大,当温度升高时有温度猝灭,在室温下时间分辨发射光谱中几乎观察不到晶体缺陷发射。对于发射中心位于440 nm Ce~(3+)的5d→4f能级发射,在60~300 nm范围内能够观察到多个激发峰,其中能量小于材料禁带宽度的激发是属于Ce~(3+)5d能级的直接激发带,对应快速的激发发射过程。在低温时能够观测到发光中心位于392和426 nm分立的发射峰,对应Ce~(3+)的5d→4f(~2F_(5/2),~2F_(7/2))的发射。当温度升高到室温时,光谱宽化,无法观测到分立的发射峰。在温度200和300 K时,当激发光的能量大于带隙宽度,衰减曲线有明显的上升沿,说明有能量传递给Ce~(3+)。  相似文献   
94.
液晶填充碲酸盐光子晶体光纤偏振旋转器   总被引:1,自引:0,他引:1  
提出一种液晶填充碲酸盐玻璃的柚子型光子晶体光纤偏振旋转器,利用全矢量有限元法,对液晶填充碲酸盐玻璃的柚子型光子晶体光纤的偏振旋转特性进行数值模拟,并分析了光纤结构参数、环境温度、工作波长等对光纤偏振旋转特性的影响.研究结果表明:此种偏振旋转器具有较高的旋转效率、较低的工作串扰和较短的旋转长度,在工作波长为1.55μm、偏振角度为45°时,其值分别达到99.947%、-32.84dB和197μm;另外,随着光纤薄壁厚度的增加,旋转长度随之升高,随着工作波长的变大,旋转长度随之降低,随着温度的增加,旋转长度随之升高.这种新型的光子晶体光纤为偏振旋转器的研发提供了参考.  相似文献   
95.
从理论上提出了一种新型金属性硅的同素异形体hP12-Si。hP12-Si结构可以看作是由六元环形成的一种隧道型结构,与之前报道的Si24结构近似。弹性常数和声子谱的计算结果验证了该结构在常压下的稳定性。通过结构遗传性和热力学稳定性分析表明,可以效仿Si24的制备方法,通过预先合成出高压前驱物LiSi12再除去其中的Li原子来获得hP12-Si。在这种结构中,有一半的硅原子为5配位,其他硅原子为4配位。电子结构计算表明,该结构具有金属导电性,导电性主要是由于5配位原子的存在导致价电子具有离域性。  相似文献   
96.
拉曼光谱物质定性鉴别已被广泛应用于诸多行业和研究领域,但传统拉曼光谱分析过程中的预处理主要依赖人为经验,光谱特征提取虽然能够降低信号维度,同时也会造成部分光谱信息损失。特性相近物质本身光谱相似度较高,受到测量过程中环境干扰和分析过程中多种误差影响,导致最终分类效果并不理想。针对此问题,提出基于一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)的拉曼光谱定性分类方法。实验采集雌酮(Estrone)、雌二醇(Estradiol),雌三醇(Estriol)三种不同雌性激素粉末的拉曼光谱,设计随机平移、添加噪声和随机加权三种光谱数据增强方法,构建数量充足的拉曼光谱数据库用于神经网络模型训练与测试;基于拉曼光谱数据特点提出一维卷积神经网络分类模型,将光谱预处理、特征提取和定性分类的全过程融为一体。通过大量仿真实验,优化所提出的神经网络模型超参数和训练过程并测试分类效果,从预处理对光谱分类结果的影响和模型抗干扰性能两个方面与多种传统拉曼光谱分类算法对比,评价模型性能。实验结果表明,本文提出的一维卷积神经网络模型可实现三类雌性激素粉末拉曼光谱快速准确分类,分类正确率最高可达98.26%,分析过程中无需光谱预处理和特征提取步骤,简化了光谱分析流程,并能保留更多有效信息。同时,当模拟测量噪声强度达到60 dBW时,传统方法分类正确率均明显出现不同程度明显降低,卷积神经网络模型依然能够取得96.81%的分类正确率,说明相比对传统拉曼光谱分类方法,所提出方法受光谱测量噪声影响更小,鲁棒性更强,适用于分析更复杂现场测量的强噪声拉曼光谱信号。该研究结果表明深度学习方法在拉曼光谱的分析与处理领域具有很大的应用潜力和研究价值。  相似文献   
97.
为了对水中的有机污染物进行绿色、快速、准确的检测,提出了一种基于荧光多光谱融合的水质化学需氧量(Chemical Oxygen Demand, COD)的检测方法。实验样本为包含近岸海水和地表水在内的实际水样53份,采用标准化学方法获取样本的化学需氧量的理化值,利用荧光分光光度计采集样本的三维荧光光谱并对光谱数据进行处理和建模。在200~300 nm(间隔5 nm)的激发波长范围内将三维光谱展开成二维的发射光谱(发射波长范围250~500 nm,间隔2 nm)。采用ACO-iPLS(蚁群-区间偏最小二乘)算法提取发射光谱特征,PSO-LSSVM(粒子群优化的最小二乘支持向量机)算法建立预测模型,分别建立了单激发波长下的荧光发射光谱数据预测模型、多激发波长下发射光谱的数据级融合(LLDF)预测模型以及多激发波长下发射光谱的特征级融合(MLDF)预测模型,通过对预测效果的对比,得出结论。实验结果表明,对于不同激发波长下荧光发射光谱数据而言,265 nm激发光作用下的发射谱数据的预测模型最优,其检验集决定系数R2P和外部检验均方根误差RMSEP分别为0.990 1和1.198 6 mg·L-1;对于荧光多光谱数据级融合模型(简写为:LLDF-PSO-LSSVM)而言,在235,265和290 nm激发光作用下的发射光谱的LLDF模型效果最优,其检验集的R2和RMSEP分别为0.992 2和1.055 1 mg·L-1;对于荧光多光谱特征级融合模型(MLDF-PSO-LSSVM)而言,在265,290和305 nm激发光作用下的荧光发射光谱的MLDF模型效果最优,其R2p=0.998 2,RMSEP=0.534 2 mg·L-1。综合比较各类建模结果可知,MLDF-PSO-LSSVM的模型效果最优,说明基于荧光发射光谱数据,采用多光谱特征级融合模型检测水质COD时,检测的精度更高,预测效果更好。  相似文献   
98.
将三维荧光光谱技术、小波压缩和交替惩罚三线性分解算法(APTLD)结合,提出了一种鉴别掺伪芝麻油的新方法。利用荧光光谱仪测量纯芝麻油及掺伪芝麻油样本的三维荧光光谱,通过激发校正和发射校正消除仪器带来的误差,得到样本的真实三维荧光光谱数据;利用小波压缩对处理后的真实数据进行压缩,以减少冗余信息,其中压缩分数和数据恢复分数分别大于94.00%和98.00%;利用APTLD算法对压缩后的数据进行定性及定量分析,得到的回收率为97.0%~99.8%,预测方均根误差不大于0.120。研究结果表明,所提方法能够准确鉴别纯芝麻油及掺伪芝麻油样本,并对其组分含量进行预测。  相似文献   
99.
提出了一种基于激光拉曼光谱和人工蜂群智能优化支持向量回归机(ABC-SVR)算法的快速定量检测三组分混和油中3种脂肪酸含量的方法。该方法针对光谱数据信息与样本之间非线性、高维度的关系,建立了预测精度及建模效率均高于同类对比算法的数学模型,同时避免了气相色谱法、液相色谱法等对混合油脂肪酸含量的检测方式,根据纯种油中3种脂肪酸含量的国际标准,由油品配置体积得到脂肪酸质量,有效降低了检测成本与实验复杂程度,提高了检测工作的实用价值。首先根据一定梯度配置66组混合油检测样品,使用便携式拉曼光谱仪采集样本的拉曼光谱信息,扣除背景噪声;观察多组样本的拉曼光谱图可知,由于官能团浓度的差异,食用油的拉曼特征峰位移基本相同,特征峰的峰值明显不同,因此基于特征峰信息可以区分食用调和油的不同混合物;其次对拉曼光谱做背景扣除、光谱平滑、最大值谱线归一化三步预处理,以降低实验中不可控的外界因素及背景荧光的影响,准确提取光谱特征峰强度信息;然后根据纯种油中3种脂肪酸的国际标准含量,结合国家食品法典委员会标准CODEX STAN210-1999《指定的植物油法典标准》中规定的纯种油密度中值,由油品体积得到脂肪酸质量数;随机选取56组样本数据作为训练集,剩余10组样本数据作为预测集;以训练集光谱特征峰强度和脂肪酸质量分别作为回归模型的输入及输出值,建立SVR和PSO-SVR,ABC-SVR三种混合优化算法对比的定量分析模型,对测试集的3种脂肪酸含量分别进行预测;最后通过均方误差(MSE)、相关系数(r)及建模时间(Elapsed time)分别进行对比,建立数据表对模型精准度进行检验。实验结果表明,通过ABC-SVR定量分析模型效果最佳,3种脂肪酸含量预测值与真实值的均方差分别为0.88×10-4,16×10-4和8×10-4,均低于0.002;相关系数分别为93.43%,99.65%和99.43%,均高于93%;预测时间(Elapsed time)分别为1.26,2.42和2.14 s。因此,所提出的检测方法,具备较高的精确度、较快的建模时间,且在理论上的类似条件下可适用于其他样品检测工作,可为振动光谱学对食用油掺伪分析的进一步工作提供可行的理论依据。  相似文献   
100.
水体中过高浓度的有机物含量危害巨大,不仅会造成严重的环境污染,而且危害人类身体健康,传统化学法检测水体化学需氧量(COD)的步骤繁琐且时效性差,不利于水体中COD的快速定量检测。针对这些问题,提出了一种将紫外光谱与组合权值模型相结合的快速定量检测COD方法,该组合权值模型是基于反向区间偏最小二乘法(BiPLS)结合组合区间偏最小二乘法(SiPLS)算法对紫外光谱的特征子区间筛选组合,然后依据特征子区间的权值建立的预测模型。首先按照一定的浓度梯度配制45份COD标准液样本,通过实验获取标准液的紫外光谱数据;对获取到的COD紫外光谱数据做一阶导数和S-G滤波(Savitzky-Golay)的预处理,消除基线漂移和环境干扰噪声;应用SPXY(Sample set partitioning based on jiont X-Y)算法将实验样本数据组划分成校正集和预测集。然后基于BiPLS算法对全光谱区间进行波长筛选,在BiPLS筛选过程中,目标区间的划分数量会对建模产生较大影响,于是对子区间划分数量进行优化,把子区间分成15~25个,在不同区间数下都进行偏最小二乘(PLS)建模,通过交互验证均方根误差(RMSECV)来筛选最优子区间数,得到区间数为18时,模型效果最佳。从18个波长区间筛选出了6个特征波长子区间,入选的子区间为2,1,3,11,7和6,对应波长为234~240,262~268,269~275,290~296,297~303和304~310 nm,这6个特征波长区间涵盖了大量的光谱信息,对最终预测模型的贡献度大;接下来通过SiPLS算法对这6个初选区间进行进一步的筛选组合,采用不同的组合数构建不同特征区间上的PLS模型,在相同组合数下,筛选出一个区间组合数最优的结果,对比不同组合数下预测模型的误差与相关性,将6个区间筛选组合为3个特征波长区间,分别为234~240,262~275和290~310 nm,这三个特征区间最佳因子数分别为4,4和3。对传统SiPLS的特征区间组合方法进行改进,基于权值的大小来对这3个特征区间进行线性组合,代替过去特征区间直接组合的方法。通过权值公式计算出这3个特征区间的权重大小分别为0.509,0.318和0.173,最终建立线性组合权值COD浓度预测模型。为了验证组合权重预测模型的精度,另外建立了全波长范围内的PLS预测模型、单个特征波长区间的PLS预测模型、直接组合特征波长区间的PLS模型,并使用评价参数相关系数的平方(R2)、预测值与真实浓度值的均方根误差(RMSEP)和预测回收率(T)来对模型评价。验证结果表明,相比其他预测模型,组合权值模型相关系数的平方达到了0.999 7,明显优于直接组合特征区间建模的0.968 0,预测均方根误差为0.532,比直接组合特征区间的预测模型误差降低了29.3%,预测回收率为96.4%~103.1%,显著地提高了预测精度。该方法简单可行,不会产生二次污染,可为在线监测水体中COD浓度提供一定的技术支持。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号